
JOURNAL OF MATERIALS SCIENCE 32 (1997) 5305 — 5311
Incorporating multi-region crack growth
into mechanical reliability predictions
for optical fibres

T. A. HANSON, G. S. GLAESEMANN
Corning Incorporated, Corning, NY 14831, USA

Most mechanical reliability models for optical fibre assume the same crack growth

parameters (n and B) for both proof testing and in-service life. However, this assumption

leads to inconsistencies in our understanding of how the fibre behaves in the laboratory and

in the field. In 1983 Ritter et al. suggested that proof-testing and in-service crack growth

parameters differ according to their respective environments. Recent high-speed strength

tests of abraded optical fibres indicate that crack-growth parameters change as a function of

time under the same environmental conditions. It was suggested that at high processing

speeds, the presence of crack growth in Region II of the K—V relationship should be

entertained. In this work, the impact of Region II crack growth during proof testing was

explored and the effect on mechanical reliability predictions evaluated.
1. Introduction
The power law has long been used as a model of flaw
growth and as a basis of computing the reliability of
fused silica-clad optical fibre. Most fibres are proof
tested at a nominal proof stress of 0.69 GPa (105 p.s.i.)
during manufacturing to remove large flaws from the
population. This paper will demonstrate that the stan-
dard Region I power law is insufficient for completing
the analysis of the reliability of proof-tested fibre and
that incorporating the effect of Region II should be
considered.

Fuller et al. [1] showed that, with the single-
region power law, the minimum surviving strength
depends on the proof stress and unloading time
in a relationship with the stress corrosion para-
meter, n, and the B parameter according to a complex
arrangement. The relationship depends on whether
unloading is ‘‘fast’’, or ‘‘slow’’. ‘‘Fast’’ corresponds
to conditions in which unloading is sufficiently fast
for no unloading failures to occur. In ‘‘slow’’ un-
loading, the minimum surviving strength is only
a function of the unloading rate, and can ap-
proach zero as B approaches zero. Hence the value of
B has direct relevance to the reliability derived from
conducting a proof test for both ‘‘fast’’ and ‘‘slow’’
conditions.

Various values of B have been reported in the litera-
ture (from 5]10~9 to 0.5 GPa2s). Glaesemann and
Helfinstine [2] conducted inert testing on weak fibres
and concluded that B is around 5.8]10~4GPa2s by
comparing strength measured at !120 °C to room-
temperature dynamic fatigue measurements at
4% min~1. This low value of B would suggest that
most proof-test unloading rates may not be fast
enough to preclude proof-test unloading failures.
0022—2461 ( 1997 Chapman & Hall
Consequently, the minimum surviving strength could
be significantly less than the proof stress.

This result is not consistent with historical field
data. Tens of millions of kilometres of fibre have been
installed with bend stress ranging from 20%—30% of
the proof stress. At most, only a handful of fatigue-
related failures have been reported.

The following dynamic fatigue experiment was
conducted to explore the phenomena of high-speed
fracture in more detail. Note that these results were
previously published [3], but it is useful to review the
results here. These results have led the authors to
conclude the Region II, as described by Lawn [4],
plays an important role in high speed events such as
proof testing dynamics.

2. Experimental procedure
Fibre testing with commonly used universal tensile
machines allows for maximum strain rates in the
100% min~1 range. To achieve higher strain rates for
this study, a belt slide system was employed [3]. This
apparatus is shown schematically in Fig. 1. Fibres are
attached to a piezoelectric load cell mounted on
a rigid station at one end and a capstan mounted on
a belt slide system at the other end. The belt slide is
driven by a stepper motor and is capable of a max-
imum strain rate of approximately 5000% min~1, or
a stressing rate of 57 GPa s~1. A small amount of
slack in the gauge length of the fibre allows the belt
slide to reach maximum velocity before the fibre ex-
periences appreciable tension. Load versus time data
are taken using a digital oscilloscope. All tests were
performed in a laboratory ambient environment that
was 40%—50% RH and 23 °C.
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The slowest strain rate provided by this belt slide
system is 30% min~1, and therefore, a conventional
screw-driven tensile testing method was used to pro-
vide strength data at slower strain rates. Nominal
strain rates from 0.0025% min~1 to 25% min~1 were
used.

The silica-clad fibre used in this study was manufac-
tured in a conventional manner with the exception
that it was intentionally abraded during the draw
process to a strength near typical proof-stress levels.
The abrasion technique consisted of lightly pressing
a 150 lm glass fibre against the fibre being drawn
prior to application of the polymer coating. All the
data for the twelve rate are shown in Fig. 2 in Weibull
fashion.

The logarithm of the median failure stress for each
nominal rate, plotted versus the logarithm of stress
rate is shown in Fig. 3. The fitted line relates to the
value of n (24.5) that would be measured using the
lower rates, which correspond to those used in TIA
Fibre Optic Test Procedure-76 [5].

The failure stresses at the higher rates form a reverse
pattern from that expected from the power law, which
predicts either a linear extension of the line in Fig. 3,
or a flattening out of the curve at the higher rates once
the pre-fatigue strength had been reached. The in-
crease in the slope at higher rates suggests a lower
n for high stress rates and that Region II of the K—»
curve may be the cause. Region II would thus play
an important role in determining the strength degra-
dation in fast stress rate events such as proof-test
unloading.

Figure 1 Schematic drawing of the belt slide tensile testing appar-
atus.

Figure 2 Experimental results of high-speed testing plotted in
Weibull fashion.
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Figure 3 Stress and stress rate plotted for median strength values.

3. Two-region power-law mathematics
It is well known that subcritical crack growth in many
glasses follows the classic schematic curve in Fig. 4
where crack velocity, da/dt, is plotted as a function of
the stress intensity factor, K

I
. Three regions of crack

growth have been identified and thoroughly discussed
in the literature [4]. In this work, we are primarily
concerned with incorporating the effects of Region II
type crack growth into conventional models for sub-
critical crack growth in Region I. To do this, we model
these regions as two power laws, each having different
slopes which we will call n

1
for the usual Region I, and

n
2
, describing Region II. This is shown schematically

in Fig. 5. There are corresponding B
1

and B
2
values as

well. The two-region power law can be written as
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where K
I
is the mode I stress intensity factor, K

I#
is the

critical stress intensity factor associated with failure,
da/dt is the flaw growth rate, v is the critical velocity,
and rK

I#
is the K

I
value in the K—» curve where

Regions I and II intersect.
Equations 1 can be rewritten in terms of the chang-

ing strength, S, and applied stress, r, using conven-
tional fracture mechanics, K

I
"½ra1@2 and

K
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"½Sa1@2. For dynamic fatigue at constant stress-

ing rate to failure, the following equations govern the
relation between strength and failure stress for Re-
gions I and II growth, respectively
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A physical description of failure for the two region
model in Equation 3 would be that while loading
under a constant stress rate, a flaw with initial
strength, S , experiences typical Region I growth as
0



Figure 4 Classic K—» curve for silica glass.

Figure 5 Schematic drawing of the two-region power-law model.

expressed by Equation 3a and degrades to strength, S
r
.

At strength, S
r
, the growth behaviour transitions to

that of Region II and the flaw degrades to the final
strength, r

&
. Note that when the flaw has grown to

strength S
r
, the applied stress is r

r
.

To determine the initial strength from a failure
stress, one must iteratively solve for r

r
and S

r
using

Equation 3b, then calculate S
0

using Equation 3a. To
compute the failure stress for a given initial strength,
the reverse process is performed.

The above analysis was performed for the case of
dynamic fatigue. A more general treatment of crack-
growth mechanics of Regions I and II, respectively, is
expressed as
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In this manner, a flaw passes through Region II on the
way to failure. Using failure stress and any stress
history, one can solve for the various possible cross-
ings between Regions I and II. This will be done for
the proof test in a following section.

4. Two-region power law applied
to experimental data

A fundamental assumption of all fatigue parameter
evaluation algorithms is that the initial strength distri-
bution for each stress rate is drawn from the same
statistical population of flaws. Central statistics, such
as median or average, of the computed initial strength
should therefore be the same for each rate. The fatigue
parameter values for which the agreement is best are
taken to be the best estimates of the fatigue parameter
values.

Equations 3a and b were used to compute the initial
strength of the middle three failure stress values for
each stress rate for the data in Fig. 2. This was done for
many combinations of n

1
, n

2
, B

2
, and r, in a four-

dimensional binary search. Fig. 6 shows the measured
failure stress values from Fig. 3 and the computed
initial strength for the best parameter values. A sum-
mary of computed crack-growth parameters is given
in Table I.

The fact that the computed initial strength results in
Fig. 6 are the same for all stressing rates indicates that
the model appropriately incorporated the non-linear
behaviour of the dynamic fatigue data. It also gives
one confidence in drawing conclusions about the true
initial strength of flaws in fibres, a required value for
accurate reliability predictions.

Fig. 6 shows that for normal rates, the ratio of
failure stress to strength is 0.6, which corresponds to
low values of B in the context of the standard power
law. For higher rates, the ratio of failure stress to
initial strength rapidly approaches 1, which corres-
ponds to a high value of B using the standard power

Figure 6 (j) Measured failure stress data and (h) computed initial
strength.

TABLE I. Fitted fatigue parameters for the two-region power-law
model

n
1

21
n
2

4.5
r 0.645
B
1

4.5]10~5 GPa2s
B
2

0.0082 GPa2s
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law. In effect, there are two B values. The one that is
dominant depends on the stressing rate. The factor of
0.6 is in general agreement with low temperature
measurements of Proctor et al. [6] and Glaesemann
and Helfinstine [2].

The n value in Table I for Region I is within the
range of accepted values. The B value for Region I, B

1
,

is within the range of values predicted from low-tem-
perature testing of abraded optical fibres [2]. Using
a value of 0.75 MPam1@2 for K

I#
/½, the value of

B
2

leads to a computed critical velocity, v, of
0.055 mms~1. If one were to ignore Region II, as is
usually done, the critical velocity from Region I data is
determined to be 1.3 mms~1.

The predicted transition from Region I to Region II
crack growth from the high-speed fibre strength data,
rK

I#
, is 65% K

I#
. This predicted transition from Re-

gion I to II is less than the value of 80% K
I#

reported
by Weiderhorn on bulk fused silica [7]. There are
a number of factors that could explain this difference,
such as the difference in Region I crack growth be-
tween silica fibre and bulk silica or an influence of the
optical fibre coating. This remains as an interesting
area of further research.

This analysis of high-speed strength data using
a two-region crack growth model can be used to
model strength degradation for a more complex stress
history, namely that of proof testing.

5. Implications
5.1. Proof testing
The effect of Region I crack growth has been thor-
oughly discussed in previous publications [1, 8], and
therefore, a level of familiarity is assumed. Fig. 7 below
illustrates the basic proof test event. Fibre is loaded at
a stressing rate, r5 , to a predetermined proof stress
level, r

1
, held for some period of time, t

$
, and sub-

sequently unloaded at rate r5
6
. This is shown as the

solid line in the illustration.
We have chosen to examine the effect of proof

testing on the flaw that just survives the event. This is
done for two reasons, first, the modelling of this flaw
has been the source of extensive effort and interest
and, second, this flaw is the weakest one to be placed
in service. Extending the two-region power-law model
to a distribution of flaws can be done and will be
published at a later time.

The flaw that just passes proof testing begins with
a pre-proof test strength labelled S

1.*/
in Fig. 7. It

degrades during proof testing to a strength level, S
1.*/

,
by the time the dwell time is over. Now, as the stress is
removed during unloading, the flaw has the opportun-
ity to continue growing as stress still exists. It does so
until it just survives an applied stress which is equal to
the strength of a flaw that just fails, r

&.*/
. After just

surviving, it grows to a final strength S
2.*/

. The final
strength, S

2.*/
, can be less than the proof stress, r

1
, if

the unloading time is slow enough. In other words,
what happens during unloading is the key to the final
strength. This is where we make a closer examination
of the proof-test event using the two-region power-law
model.
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Figure 7 Schematic drawing of a typical proof test event.

The basic methodology for modelling the unloading
event is as follows. The minimum surviving strength,
S
2.*/

, is determined from (1) the minimum strength at
the start of unloading, S

1.*/
, that just fails at r

&.*/
, (2)

the proof stress, r
1
, and (3) the unloading time, t

6
,

assuming a linear stress reduction with time [1]. To
determine S

2.*/
, S

1.*/
is determined first and then

reduced through fatigue to S
2.*/

, during the unloading
process. A flaw that ‘‘just fails’’ is defined by a flaw-
growth curve such that the stress intensity ratio,
K

I
/K

I#
, has a maximum at the value of 1. There are

two cases involving Region II growth at the start of
unloading. The outcome is governed [1] by the para-
meter, a

a"
r3

1
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2
!2)r5

6

(5)

where r5
6
"r

1
/t

6
and the crack-growth parameters

come from Region II. The values of S
1.*/

and S
2.*/

are
determined with different equations, depending on
whether a)1 or a'1.

Case 1: a)1. This is where the unloading time is
sufficiently fast that K

I
/K

I#
decreases throughout the

unloading time. This is shown schematically as ‘‘fast
unload’’ in Fig. 8 where the ratio K

I
/K

I#
is plotted

versus unload time. In this case, K
I

never reaches
K

I#
and K

I
/K

I#
has a negative slope throughout.

Therefore, no fatigue to failure can occur during un-
loading in this case and the strength of a flaw that just
fails, r

&.*/
, is equal to the proof stress. The limit case

for this behaviour for flaws near a proof stress level of
105 p.s.i. is a"1 and the unloading rate is determined
to be 20 GPa s~1 using the two-region power law.

Case 2: a'1. In this case the flaw begins unloading
in the Region II growth range, but the unloading rate,
while still fast, results in K

I
/K

I#
initially increasing.

This is shown as ‘‘slow unload’’ in Fig. 8 where the
flaw that just survives is the one where the unloading
rate is such that K

I
/K

I#
tangentially approaches 1 and

just nearly fails. In this case the strength of the flaw
that just survives, S

1.*/
, at the beginning of unloading

can be determined from
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Figure 8 Dependence of the stress intensity factor on unload time
for various unloading cases.

and the strength of the flaw that just fails during
unloading is

r
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2
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6
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For both cases, the just surviving flaw continues to
grow, and when K

I
/K

I#
decreases to r, crack growth

moves into Region I. Thus, in order to determine the
final surviving strength, it is necessary to determine
the strength, r

3
, at the transition between regions by

iteratively solving
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Using the computed value of r
3
, the minimum surviv-

ing strength is given by
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One can also compute the initial, pre-pre-proof test
strength, S

1.*/
, that leads to the minimum surviving

strength using a similar, but simpler process. Basically,
it involves backing up through the proof-test event
beginning at the end of the dwell time where S

1.*/
is

known. Depending on the loading rate and dwell time,
the flaw will initially have Region I growth and move
into Region II growth either during loading or the
dwell time. If the transition occurs during loading,
the strength at the end of loading is determined
using Region II equations followed by the applica-
tion of the previously presented dynamic fatigue equa-
tions to determine the strength during loading where
the flaw transitions from Region I to Region II.
Well-known Region I crack-growth mechanics can
then be used to determine the initial strength before
loading.

If the transition occurs during the dwell time, the
time at which the transition occurs is determined
using Equation 4b after which Equation 4a yields the
pre-proof strength.

From a practical point of view, it is useful to deter-
mine the unloading rate above which no strength
degradation to failure can occur during unloading. As
r
&.*/

approaches the proof stress in Equation 7 one
can determine the unloading rate where the model
transitions from a)1 to a'1. Using the crack-
growth parameters in Table I and a proof stress of
0.73 GPa, the unloading rate is determined to be
20 GPa s~1. If unloading is faster than 20 GPa s~1, it
is predicted that there will be insufficient time for
crack growth to failure during unloading.

Case 3: Region I type growth at the start of un-
load. This case applies primarily to those proof test-
ing events that have a relatively slow unloading rate. If
the computed value of r

1
/S

1.*/
, is less than r, this case

applies. This unloading case might be found in situ-
ations such as the proof testing of splices and connec-
tors. There are basically two scenarios for this case.
One is where a flaw starts in Region I and transitions
into Region II before the end of unloading. The sec-
ond is where the unloading rate is slow enough that
the flaw that just survives can never reach Region II
type growth. The mathematics for this case is reviewed
in the Appendix. The point here is that the complex
scenarios brought on by considering multi-region
crack growth can be successfully modelled.

5.2. Lifetime determinations for the flaw
just passing the proof-test event

Once the post-proof-strength distribution has been
established, the two-region power-law model can be
used to model in-service life. Actually, because most
crack growth over a 25 or 45 year life is Region I type
growth, the Region II influence on such fibre lifetimes
will be small.

For the purpose of this paper, we limit the lifetime
prediction to that of the largest flaw, S

2.*/
. The max-

imum static applied stress, r
!
, for a flaw with a post-

proof strength of S
2.*/

to survive a service life, t
&
, is

determined by computing the time for the onset of
Region II using Equation 4a, followed by application
of Equation 4b to determine the additional time to
grow to failure in Region II. Table II shows the results
of these calculations for an assumed set of proof-test
conditions and the fatigue parameters from Table I.

TABLE II . Minimum surviving strength and lifetime determina-
tions

Proof stress (GPa) 0.73
(103 p.s.i.) 105
Dwell time (s) 0.3
Unload time (s) 0.01
Unload rate (GPa s~1) 73
a(a(1)! 0.26
S
1.*/

, minimum initial strength to survive proofing (GPa) 1.17
(103 p.s.i.) 169
S
1.*/

, minimum strength at unload (GPa) 0.73
(103 p.s.i.) 105
S
2.*/

, minimum surviving strength (GPa) 0.70
(103 p.s.i.) 100
Survival time (y) 25
Applied stress (GPa) 0.17
(103 p.s.i.) 25
Applied stress/(min. surviving strength, S

2.*/
) 0.25

Applied stress/proof stress 0.23

!For this example, the case of very fast unloading is used, a)1,
such conditions can be achieved on typical equipment for proof
testing long lengths of fibre.
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Thus, this model predicts that a flaw just surviving
case 1 unloading conditions will fail in 25 years if
loaded to 23% of the proof stress. For a more conser-
vative approach, where reliability is designed around
1% crack growth in 40 years, the allowable stress is
determined to be 20% of the proof stress.

It is important to note that the above analysis used
a proof stress of 105]103 p.s.i which is the actual
proof stress needed to satisfy FOTP-31C require-
ments for proofing at a nominal proof stress of
105 p.s.i., for the given unloading time. That is to say,
a slight over-proof testing is required under the
FOTP. Using the nominal proof stress of 105 p.s.i. the
allowable stress for failure in 25 years simply becomes
25% of the nominal proof stress, and that for 1%
crack growth in 40 years becomes 21.5% of the nom-
inal proof stress.

6. Conclusions
In recent years, it has become increasingly apparent
that a single region of crack growth was insufficient to
explain crack growth during both high-speed and
long-term low-stress events. The incorporation of the
well-known Region II into the crack growth model is
helpful in explaining contradictions surrounding the
B value as well as previously observed non-linear
dynamic fatigue behaviour.

For high-speed events such as proof testing, Region
II crack growth plays a significant role in establishing
the post-proof strength distribution. This paper was
confined to modelling the growth history of the
weakest flaw. It was found that the incorporation of
Region II crack growth generates several crack-
growth scenarios and attempts were made at extend-
ing the model to each of them.

The case where a flaw just survived a high-speed
proof test during manufacturing, was extended to in-
service life. It was found that for 25 year life, an
applied stress of 23% of the actual proof stress, or
25% of the nominal proof stress, is needed. A more
conservative approach of allowing only 1% crack
growth in 40 years results in an allowable applied
stress of 20% of the actual proof stress, or 21.5% of
the nominal proof stress.

Future work will examine the influence of multi-
region crack growth on a distribution of flaw sizes. It
is believed that this will provide a more accurate
prediction of post-proof strength distributions needed
in reliability predictions. In addition, experimental
evidence is needed to support the modelling of slower
speed proof-test events.

Appendix. Case 3: Region I type growth
at the start of unload
There are two scenarios here. Scenario 1 is where the
stress intensity factor starts at Region I and continues
on into Region II. This is similar to Case 2 above, with
the exception that the flaw begins in Region I. It is
useful to consider this unloading scenario in two pro-
cess steps. There is Region I growth to ‘‘r’’ followed by
Region II growth. Again there is a flaw that just fails
5310
or just survives and becomes the minimum strength
flaw. Equation 7 gives the minimum failure stress,
r
&.*/

, for the flaw that just fails. Using this value, the
following equation is iteratively solved to determine
the stress, r

r1
, above r

&.*/
, at which Region II must

have started,
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where r
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is the applied stress when K
I
/K

I#
"r.

Knowing, r
r1
, one can backup through the Region

I growth portion of unloading process to determine
the strength at the beginning of unloading. Note that
Scenario 1 for this case is verified if K

I
/K

I#
is increas-

ing when condition r is reached using
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The strength at the beginning of the unloading time,
S
1.*/

,, for this scenario is determined from
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The minimum post-proof strength, S
2.*/

, is computed
from r

&.*/
as previously described for the Region II

case in Equations 8 and 9. The initial pre-proof
strength that just passes proof testing, S

1.*/
, is cal-

culated using Equation 4a because only Region I
growth occurs up to the start of unloading.

Scenario 2 is used when the inequality in Equation
A2 is not true. Physically, this corresponds to the
situation where a flaw that starts in Region I at the
onset of unloading with K

I
/K

I#
increasing with time,

approaches r. However, in this case the unloading rate
is such that if Region II growth occurs, the resulting
K

I
/K

I#
ratio immediately goes to 1 and the flaw fails.

In other words, the flaw that just survives unloading
experiences only Region I growth. Thus, the largest
flaw that can just survive is one that has a K

I
/K

I#
equal to r and a strength at the beginning of unload of
the strength r

1
/r.

If K
I
/K

I#
is decreasing at the beginning of unloading

we have the situation where Region II is just avoided
at the beginning of unloading. The following is true for
this situation
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The minimum strength at the beginning of unloading,
S
1.*/

, that survives unloading for this scenario is sim-
ply r

1
/r. Any flaw weaker than r

1
/r will transition

into Region II during unloading and immediately fail.
Even more interesting is where growth is in Region

I and K
I
/K

I#
initially increases at the start of unload-

ing. This occurs when the inequality in Equation A4
is not true. Here a flaw that is initially in Region I
approaches Region II some time during unloading. If



the flaw is too weak it will enter into Region II and not
survive unloading. The task is to find the maximum
strength flaw that just avoids Region II. Of all the
flaws that have just survived the proof stress over the
dwell time, with general strength at that point called
S
P
, there is flaw with strength S

P.!9
at the beginning of

unloading that degrades under Region I growth to
a point where K

I
/K

I#
just approaches r. The stress at

this point is identified as r
.!9

and the strength of the
flaw at r

.!9
is given as S

.!9
.

The inequality in Equation A4 for this situation is
not true and is rewritten as

r
1

S
1

(r (A5a)

and

A
S
1

r
1
B
n1~2

(

r3
1

B
1
(n

1
!2)r5

6

(A5b)

The condition in Equations A5a and b implies that
Region I growth is occurring at the start of unloading
and that the stress intensity ratio is increasing with
time.

The stress, r
.!9

, at which the stress intensity ratio is
maximum, is determined by setting the first derivative
of the stress intensity ratio to zero to yield

rn1`1
.!9

"

n
1
#1

3
B

1
(n

1
!2)r5

6 CSn1~2
1

!

rn1`1
1

B
1
(n

1
#1)r5

6
D

(A6)
The strength, S

.!9
, at which the maximum stress inten-

sity ratio occurs is

Sn1~2
.!9

"

n
1
#1

3 CSn1~2
1

!

rn1`1
1

B
1
(n

1
#1)r5

6
D (A7)

The maximum strength at the beginning of unloading,
S
1.!9

, that can begin in Region I and increase to
Region II without crossing is, therefore, that value of
S
1

for which r
.!9

/S
.!9

"r. This is found directly by
solving Equations A6 and A7 for S

1
and assigning that

value to S
1.!9

Sn1~2
1.!9

"

rn1`1
1

B
1
(n

1
#1)r5

6

#

3

n
1
#1 C

B
1
(n

1
!2)r5

6
rn1`1 D

(n1~2)@3

(A8)

Thus the strength of a flaw just avoiding Region II
growth during unloading, S

1.!9
, can be determined
for this special case. Furthermore, the minimum
strength after proof testing, S

2.*/
, is determined by

simply applying Region I mechanics once S
1.!9

is
known

Sn1~2
2.*/

"Sn1~2
1.!9

!

rn1`1
1

B
1
(n

1
#1)r5

6

(A9)

Combining Equation A8 and A9, the minimum post-
proof strength for Scenario 2 of the case for Region
I growth at the beginning of unloading is

Sn1~2
2.*/

"rn1~2
1

3

n
1
#1 C

B
1
(n

1
!2)r5

6
r3

1
rn1`1 D

(n1~2)@3
(A10)

Although it is possible to model these Case 3 scen-
arios, an experimental verification of the model is
needed.

Acknowledgements
The authors thank our colleagues at Corning, M. G.
Estep, A. Dwivedi and J. D. Helfinstine, for many
helpful discussions.

References
1. E. R. FULLER Jr, S. M. WEIDERHORN, J. E. RITTER Jr

and P. B . OATES, J. Mater. Sci. 15 (1980) 2282.
2. G. S. GLAESEMANN and J. D. HELFINSTINE, in ‘‘Proceed-

ings fo Fiber Optics Reliability and Testing: Benign and Ad-
verse Environments’’, SPIE Vol. 2074, edited by D. Paul and
H. Yuce (SPIE, Boston, 1993) p. 95.

3. G. S. GLAESEMANN, in ‘‘Proceedings of Optical Network
Engineering and Integrity’’, SPIE Vol. 2611, edited by H. Yuce,
D. Paul, and R. A. Greenwell (SPIE, Boston, 1995), p. 38.

4. B. R. LAWN, in ‘‘Fracture of Brittle Solids’’ 2nd Edn (Cam-
bridge University Press, 1993).

5. TIA/EIA-455-76, Method For Measuring Dynamic Fatique of
Optical Fibres by Tesion, edited by H. Yuce (Telecommunica-
tions Industry Association, Arlington VA, 1993).

6. B. A. PROCTOR, I. WHITNEY, and J. W. JOHNSON, Proc.
R. Soc. ¸ond. A 297 (1967) 534.

7. S. M. WEIDERHORN, in ‘‘Fracture Mechanics of Ceramics’’,
Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. Lange
(Plenum Press, New York, 1974) p. 613.

8. TIA/EIA-455-31C, Proof Testing Optical Fibers by Tension,
edited by T. A. Hansion (Telecommunication Industry Associ-
ation, Arlington VA, 1994).

Received 21 November 1996
and accepted 1 May 1997
.

5311


	1. Introduction
	2. Experimental procedure
	3. Two-region power-law mathematics
	4. Two-region power law applied to experimental data
	5. Implications
	6. Conclusions
	Appendix. Case 3: Region I type growth at the start of unload
	Acknowledgements
	References

